Remote Condition Monitoring of Track Assets Using Revenue Vehicles

Rob Lambert, Senior Business Manager Monash Institute of Railway Technology Melbourne, Australia

Agenda

- 1. Monash IRT Overview
- 2. Introducing the Instrumented Revenue Vehicle
- 3. Examples of benefits
- 4. Further development

IRT Capabilities

- Materials Analysis and Physical Testing
- Condition Monitoring
- Data Analytics
- Wheel-Rail Interface
- Vehicle Dynamic Simulation
- Track Performance
- Welding Process Development
- Novel Technology Implementation

IRT Services over 160 Clients

Broader Academic Capabilities

- Links to world class academic skills in:
 - Accident research
 - Human factors
 - AI and Machine Learning
 - Sustainable Materials
 - Industrial Design
 - Robotics and Automation

Instrumented Revenue Vehicles

Instrumented Revenue Vehicles

- Autonomous structural health condition monitoring system on revenue service rollingstock
- Over 100 instrumented vehicles have been installed by IRT
- Near real time reporting of the condition of the track and rolling stock performance
- Effectiveness of maintenance activities

IRV System Examples

- Mature technology, since 2002
- Ruggedized integrated monitoring system
- Passenger and freight applications
- Local and self powered solutions

IRV Sensor Examples

IRV Sensor Examples

- Instrumented springs & triaxial accelerometers on axle box ends – track geometry
- Lateral accelerometer on bolster centre plate hunting
- Steer sensors track buckle indication
- Drawbar/coupler instrumentation in-train forces during running and unloading

IRV System Benefits

	IRV	Geometry Car
Rail Running Surface	\checkmark	\checkmark
GPS Position	\checkmark	\checkmark
Altitude	\checkmark	\checkmark
Vertical Alignment (Top / Surface)	\checkmark	\checkmark
Lateral Alignment	Bogie Steer	\checkmark
Twist	\checkmark	\checkmark
Curvature	\checkmark	\checkmark
Measures under dominant vehicle loading	\checkmark	
Vehicle Dynamic Response to Track	\checkmark	
Vehicle Hunting	\checkmark	
Vehicle In-Train Force	\checkmark	
Doesn't requires separate path & operators	\checkmark	
Track Measurement Interval	~20-150 per week	~1-3 months

Repeatability and Accuracy

- Geometry car data (red line) and IRV data (black line) shows close correlation
- From actual vehicles, at operating speed, multiple times per day

How is it Delivered?

IIIRT

IRV Vehicle Reactions

- Wagon types react different to loading conditions
- Critical events tailored to vehicle response
- Spring binding or wheel lift event risk

Suspension Travel Utilisation (mm)

Forecasting of Maintenance

Vertical Accelerations All (g) vs. Date

In-train Forces

Instrumentation ⇒ Dynamic Model ⇒ Prediction of maximum Fatigue Damage

Example – Weld Condition

- Rail longitudinal profiles sampled to 5mm increments along the track
- Running surface information can be extracted
- Dipped and peaked welds can be identified as well as vehicle dynamics due to weld condition

Example – Weld Condition

- View system wide weld profile data
- Convert results to system of choice (e.g. dip angle)
- Assess actual vehicle response to defects to produce standards relevant to safe operations

Network Coverage

- Time between IRV
 measurements
- Used to highlight to operations where IRVs need to be included in rakes

Hours Between IOC Coverage (Severity 1 Capable) - Based on month / trips

Dynamic Track Gauge Measurement

- Installed as part of the IRV system in a revenue car
- Continuously measures gauge during normal traffic hours
- Satisfies EN 13848-1:2003+A1:2008
 "Railway applications – Track Geometry Quality"

Dynamic Track Gauge

- Twin lasers used to calculate gauge
- Reported down to 1m when required
- Revenue vehicle loading so representative of any dynamic movement under revenue axle load
- Standard operation in MTR

HEAVY HAUL SEMINAR · JUNE 23 - 24

21

Expansion to Rail Wear

 Complex calculations to convert rail frame of references into measurement frame

Profile Alignment

Calculation of wear done onboard

Validation against Track Geometry Car

• Good correlation to geometry car and able to drill down into 1m data

- Example measurements through a curve
- Vertical wear similar for low and high, side wear much lower on low rail

Continued Development

Axle Power Generation

- Current systems powered by solar and batteries
 - Reduced output during poor weather or orientation
- Axle generation system in use for six months, generates 350W at 80km/h
- Fail safe nylon bearing adaptor interface

Continued Development

- Bespoke rig at Monash for further developing the systems
- Can simulate measured real track gauge, cant and inclination defects and test capabilities of IRV

Instrumented Revenue Vehicles

- Lower cost, rugged, revenue vehicle monitoring
- Provides near real-time track, vehicle and component performance
- Forecasting of maintenance and improvement of standards
- Growing capabilities of track gauge, rail wear and power generation

